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ABSTRACT

Identifying prone road traffic accidents (PRTA) has been based
on the total number of accidents data. Determining road names
that have not been appropriately approved makes the data
biased. Many researchers have reviewed many factors, spatial
methods of analysis, and ways to improve past traffic strategies.
The searching method with a systematic literature review (SLR)
was conducted on seven publishers of the traffic accident
classification database. They are ACM Digital Library, IEEE
e-Xplore, ScienceDirect, Springer, Sage, Taylor & Francis, and
Wiley, then produced 189 major relevant studies to the findings
of this study. SLR is used to find the most relevant journals,
research topics, trends in the field, multi-criteria spatial dataset
parameters, estimation methods, trends, the best methods
currently, proposed improvement methods, and the most
commonly used efforts to determine in a collection of road
traffic accidents. The study results obtained that multi-criteria
spatial data were developed in different spatial analyses. The
SLR mapping results found gaps for hybrid two types of
classification methods on multi-criteria decision making
(MCDM) and Spatial Multi-level Classification. The
consistency test of many methods is done by the Consistency
Test Method (MCT), the value of Precision-Recall Accuracy
(ARC), and Site Consistency Test (SCT).

Key words : spatial analysis, spatial data modeling, prone road
traffic accident, hybrid methods, multi-criteria spatial analysis,
SLR.

1. INTRODUCTION
The number of traffic accidents based on statistical data seriesis

determining PRTA
classification. Data on the number of accidents that can be

one indicator of the main factors
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accessed publicly do not contain complete information on the
accident road. The detailed data is still private in Government
Agencies. Things that become indicators of the main factors, if
not detailed in the spatial analysis modeling process, will result
in biased decisions when used as a policy to reduce the number
of traffic accidents. The main factors of traffic accidents are the
lack of interchanges along Inappropriate
nonstandard horizontal curves along roads, traffic of smugglers
roads [1], and road horizontal alignment conditions [2]. Other
factors are the function of road geometry, the environment, and
traffic conditions [ 3]. Real-time traffic and weather data are also
that accidents [4]. Road geometric
construction design [5], poorly functioning road infrastructure,

roads, and

factors affect road
environmental conditions, roadway signals, congestion, human
factors, and lack of safety while driving are also critical
determinants of road accidents [6].

The number of accidents resulting in death continues to increase
each year. In 2004 the road traffic was ranked 9th. The World
Health Organization (WHO) estimates that 2030 road traffic
will advance to the 5th rank [7]. On the World Health Day
(WHD) dated April 7, 2004, WHO made the theme "Road
Safety is No Accident”. Data collected by WHO recorded every
1.25 million people per year deaths due to road accident, = 20
million people injured in a road accident. 75% of casualties
in developing countries, with
motorcyclists. WHO estimates that between the years 2000 to
2020, the number will increase by 60% if transportation systems

oceur 32% occurring in

are not improved by setting up traffic systems to achieve safe
roads [8]. WHO has published its report on the "Global Status
Report on Road Safety 2015", in which deaths from road
accidents rank first with the highest number of deaths occurring
in some developing countries such as Indonesia. It can be
predicted and prevented by applying a transportation system
that can warn against accident-prone areas [7].
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Previous research reviewed methods for predicting RTA using
modified C4.5 algorithm [9], autoregressive integrated moving
average [10], hot spot analysis (Getis-OrdGi*) [11][12]. The
methods to explain RTA factors, among others, a machine
learning approach [13], accident modification factors [14],
factor analysis [15], minimum uniform crash criteria [16], the
simple crash ratio of a reference group [17], minimum uniform
crash criteria [16], critical crash rate method [18], extremely
severe crash [19], the simple crash ratio of a reference group
[17], critical crash rate method [18], yearly multiplier [17], and
extremely severe crash [19].

The Systematic Literature Review (SLR) is used to identify,
evaluate, and assess in interpreting the results of studies that
have been carried out. The purpose of SLR is to answer the
research topic, problem statement, and advanced research that
could be done in software engineering [20][21]. The initial step
in the SLR is areview of the research question (RQ), identify the
methods used to answer the RQ, identify as much literature
relevant to the RQ, documenting all search results to make it
easier to find out how full of reviews that have been conducted
on the RQ [22].

The SLR results in the spatial analysis for the PRTA
classification mostly use the artificial intelligence (AI) hybrid
method two types of classification methods on MCDM (AHP
method, Fuzzy AHP method, TOPSIS, WSM. and WPM) and
Spatial Multi-level Classification (Artificial Neural networks,
Extreme learning machines, k-nearest neighbors, Naive Bayes,
Decision trees). The SLR will provide an overview of the topic
of the study of the PRTA classification that has been published
in several publisher databases. The SLR current state focuses on
the type of road network, the multi-criteria spatial dataset used,
the Al method used for spatial modeling, and the spatial
analysis method used to advance the consistency of results
between the field and search results data. The SLR results will
be used as a reference for further research. Among other things,
it analyzes multi-criteria parameters that affect the results in the
road traffic classification category. Directs to evaluate newly
proposed models using hybrid classification methods on
MCDM and spatial multi-level to PRTA classification.

The proposed model using hybrid classification methods on
MCDM and spatial multi-level classification is used in this
study to process the determinant parameter data in the PRTA
classification that include road conditions, traffic volume,
accident rate [23] [24] [25]. Spatial datasets based on (i) arterial
road networks (speed scheme, V/C ratio, the width of the road,
number of lanes, road shoulder, median strip, horizontal
alignment, vertical alignment, road conditions, and vehicle
type), (ii) collector road networks (speed scheme, V/C ratio, the
width of the road, number of lanes, median strip, horizontal
alignment, vertical alignment, road conditions, and vehicle
type), and (i11) local road networks (speed scheme, V/C ratio,
the width of the road, road conditions, average daily traffic
volume (ADT), and adjustment the size of the city).
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The PRTA classification results can be used as a reference for
conducting road safety audits, minimizing accident rates on the
road, and ensuring no deaths. It helps policymakers make
decision-making processes in road management following the
Global Plan for the Decade of Action for Road Safety year
2011-2020 WHO for pillar one and pillar 2.

2. RESEARCH METHODOLOGY

The systematic literature review (SLR) was conducted to map
the PRTA classification on the type of road network. In this
paper, three stages of SLR, planning research topics, implement
SLR research, and the SLR report, as shown in Figure 1.

Planning research topics with processes that identify the need
for research on SLR topics, develop a review of the protocol to
research issues, and evaluate review protocols on a research
topic. The SLR stage implementation with process research for
primary research topics, select primary studies (PS) in research
topics, extract data from PS, assess the quality of PS, and
synchronize the multi-parameter criteria. Reporting the results
SLR with process disseminate results.

[ START |

~y—
PLANNING THE RESEARCH TOPIC

|81ep 1: Set of Research Question with Identify The need to Research Topic For an SLE |

|81ep 2: Develop Review Map Questions to Research Topic |

|81ep 3: Evaluake Review Questions on Research Topic |

h 4
IMPLEMENTATION OF SEARCH STRATEGI SLR
|.§ilep 4: Search for Primary Studies on Research Topic l—
Identification of Query String ldentification of Literture Resources
|.§ilep 5: Select Primary Studies in Accordance with the Research Topic |-1—
STUDI SELECTION
|.§ilep 6: Data Extrmetion from primary studies
i | }
Ine lusion Criteria i Exclusion Criteria
]
Step T: Quality Assesment Question Criteria for primary studies |
v
|.§ilep &: Synchronize of research question |
v
REPORTING THE RESULTS SLR
|.§ilq‘1 9: Data Extrction Form |
¥
|.§ilq‘1 10: Data Synthesis Methods |
L]
|.§ilq‘1 11: Disseminate results |
X
(END )

Figure 1: Systematic Literature Review Steps




2.1 Search Strategy

The material used in SLR activities is the search process on
popular digital library databases. This activity aims to collect
material on the topic under study to produce a broad literature
review coverage. Searching on digital library databases
(Journal, conference, symposium, and book chapter) are limited
to the publication from January 2013 to September 2018.
Keyword search is used to focus on the title, keyword, and
abstract. Here is a list of digital library databases used in
searching the SLR materials: ACM Digital Library, IEEE
eXplore, Science Direct, Springer, Sage, Taylor & Francis, and
Wiley.

Keyword search used in the SLR material search process was
developed from PICOC [26] [27] [28], namely by identifying the
keyword search such as:

e Knowing the population and the intervention of the research
topic

e The RQ that have been defined

e Search the title, abstraction, and the relevant keyword terms
(synonyms, antonyms, and alternative spelling)

e Using Boolean search 'AND, dan 'OR,'. (roads traffic
accident OR accident rate OR safety-critical system OR road
safety analysis OR the location of traffic accident OR PRTA
OR black spots OR black sites OR black zone OR black area
OR trouble spot) AND (Multi-criteria OR classification OR
spatial analysis OR spatial data modeling)

2.2 Study Selection

Study selection is made by applying inclusion and exclusion
criteria, which serves to review the abstract and the title of a
paper on the SLR activities and decide whether the paper being
taken follows the search process based on the topic suitability
[29]. The article was obtained from various digital library
sources, then calculated to identify an appropriate theme that fit
the research topic by choosing a search strategy, developing a
search process, evaluating the results, and doing the inclusion
and exclusion criteria [28].
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Study selection to choose the feasibility of the primary study
(PS) with inclusion and exclusion criteria concerning the
relevance of the article according to research topics, place of
publication, the period making the article, evaluation of papers
on the subject which is becoming a trend for further research,
restrictions on the use of language in the article referenced.

A. Inclusion Criteria (Primary studies)

Studies on articles that contain some term keyword PRTA
classification discussing the problem, objectives, mathematical
models, datasets multi-criteria parameter, methods, and results
achieved. Studies in an article published in journals and
conferences international in the English Language, published in
January 2011 to September 2018, if there is a publication with
same study the will be used the complete version and in the year
the new

B. Exclusion Criteria (Secondary Studies)

The study did not focus on discussing the article with the
context, objectives, or research to multi-criteria parameter
dataset, mathematical modeling, classification methods in the
field of research topics the PRTA classification manifestly
missing, non-peer-reviewed publications, articles Page < 3
Grey (papers bibliographic
information, date/type paper, volume and issue numbers were
excluded), and Publications Articles that do not include the full
text, in the search engines (www.google.co.id) the contacting
authors.

pieces. literature without

Storage and processing of the results of the search process using
software article Mendeley. Figure 2 excludes primary studies
based on the title and abstract and the exclusion of PS based on
the full text, the number of articles that have been obtained at
this stage of the process of finding articles with select primary
studies by the research topic. Papers that do not conform to SLR
activity  research  topics are not  included  for
inclusion/calculation; the result SLR only refers to the article,
which has some similarities according to research topics

studied.
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Figure 2: Search and Selection Paper of Primary Studies
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2.3 Data Extraction and Synthesis Phase

Data extraction is used to collect data on the SLR process with
"?" Primary Inclusion Criteria Study paper categories. This
process to answer the RQ is described in Table-1. The synthesis
phase is used to normalize the terms used in the PRTA
classification by using the term commonly used, including:
e Multi-criteria Spatial Dataset that is used as input to the
model to be built.
e Mathematical modeling is using to determine the PRTA
classification.
e The relationship between mathematical modeling and the
multi-criteria parameter dataset is determined by civil
engineering and computer science expertise.

Table 1: The Data Extraction Properties

resource; Type
of Papers;
Application
context; Type

Property Description
Study RQ1, RQ2. How to identify articles in the
identifier on paper using keywords which correspond to
Publication the research topic (spatial analysis or
Papers spatial data modeling for roads traffic
(Researcher, accident, accident rate, location of traffic
Year, Title, accident, road safety analysis, black spots,
and Country) black sites, black zone, black area, trouble
spot, accident-prone roads, prone-roads
traffic accident)? Journal publication.
Paper RQ3. ACM Digital Library, IEEE
Database eXplore, ScienceDirect, Springer, Sage,

Taylor & Francis, Wiley; Journal,
conference, symposium, and book chapter;
government and academic; inductive and
deductive approach (research, experience,

Multi-Criteria
Parameter to

research on position or concept paper; evaluation
papers; research papers, validation research
Contributions | papers, solution proposal papers, and
of the opinion papers; how does the activity can
publication; use for the identification of research topics
Research and trend in the field of GIS to the
Trends and prone-roads traffic accident classification?
Topics Trends and topic research Researchers.

Dataset RQ4. How do management to comparison

the Dataset Multi-Criteria Parameter use to
determine the prone-roads traffic accident

PRTA classification? Spatial Datasets roads
classification traffic accident classification.
Mathematics RQ4, RQS5. What are mathematic model
Model to shapes wused as input the dataset
PRTA Multi-Criteria Parameter to determine
classification prone-roads traffic accident classification?
Analysis of spatial or spatial data modeling
to roads traffic accident classification.
PRTA RQ6, RQ7, RQ8. What methods are most
classification widely wused for prone-roads traffic
methods accident classification, and How do we

identify the application of MCDM methods
to determine Prone-roads traffic accident
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Description
classification? Validation methods to roads
traffic accident classification; Metrics used
to measure estimation accuracy, precision,
and recall methods comparison.

Property

24 Study Quality Assessment and Data Synthesis

The Study Quality Assessment is critical in assessing the quality
of the primary studies undertaken at this selection study stage
through inclusion or exclusion criteria. Giving the detailed data
statements on the inclusion or exclusion criteria, measure the
quality of the PS result by determining the strength of the
conclusions describe, as a reference to the importance of
individual studies when the result is being synthesized and
mstructions on advanced research recommendations/ future
work [27]. The Study Quality Assessment can be realized if the
PS minimizes bias (Systematic error) and maximize internal
and external validity (Generalizability and Applicability) [27].

The quality assessment was done by evaluating the credibility of
the paper, paper completeness, and relevance of the PS were
selected to provide an overview of Quartile (Q1-Q4) in the
selected PS. Ranked at each given paper quality scores by
category as suggested [27] [30] [31] [28], that is poor quality
(score= 0), partially quality (score= 0,5), and excellent quality
(score=1). All paper documents obtained in the process will be
evaluated by a device, which classifies paper into the category of
the PS [30], that is:
e Evaluation of Research Papers (ERP), paper implement and
evaluate the use of a technique of problem-solving methods.
* The Validation Research Papers (VRP) uses a case study to
evaluate an engineering problem-solving method.
® The Solution Proposal Papers (SPP) contains a new method
to provide solutions to a problem.
* Opinion Papers (OP), the paper outlines the strengths and
weaknesses of the comparison in using a method.

The Data Synthesis is used to collect evidence from primary
studies (Inclusion Criteria) and was selected to answer the RQ of
accumulating evidence and qualitative of quantitative data.
Descriptive / narrative of synthesis data obtained from the
results  of (homogeneous/heterogeneous) on the
intervention, population, context, sample sizes, outcomes, study
quality, tabulated in a table to describe the differences and
similarities with the review question [27]. The Quantitative

studies

data synthesis. The Data Synthesis by using a table, pie chart,
bar chart based on RQ.

2.5 Threats to Validity

Threats to validity are used to perform analytical studies related
to the research topic of the PRTA classification based on the
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multi-criteria parameter with MCDM methods. The article
search in the journal is not based on a reading of the manual of
topics on all titles so that it is not aware of any bias in the
selection of research topics.

SLR will conduct a study on the results of a conference paper or
paper that is published in the journal by a research topic, the
PRTA classification. The research topics are selected based on
strategy SLR that has been done by (a) reviewing the various
databases of the digital library, (b) create a keyword search with
Boolean ANDs and ORs and (c) make the Study Quality
Assessment (QA) Criteria through the inclusion and exclusion
criteria.

The RQ is determined to determine the feasibility study was
taken on aresearch topic, but it is possible the study SLR is not
going well because not all of the databases of digital libraries in
the extraction of items (title, abstract, and keywords) . SLR of the
reference, all the studies were extracted following topics the
proposed research to identify studies missed during the search at
the beginning [32]. To overcome this, then the threats to validity
are grouped into four categories, that is construct, internal,
external, and conclusion [33].

Concept Validity Threats. Major construction on Validity
Concept that determines a keyword search of the most
commonly used of the research topics are taken [33], this section
there are five taxonomic concepts built to get the keyword search
that is commonly used is (1)"accident roads", (2)"multi-criteria
parameter"”, (3)"spatial analysis or spatial data modeling", (4),
and (5)"MCDM method". The first concept is all words that
contain the term "accident roads" and all the words that contain
a synonym for "accident roads" ("roads traffic accident”,
"accident rate", "location of traffic accident”, "road safety
analysis", "black spots”", "black sites", "black zone", "black
area", "trouble spot", "accident-prone roads", "prone-roads
traffic accident") been associated with the field research topics
of accident roads. The second concept is related to the word
"multi-criteria parameter” contained in all the synonyms
"accident roads" that are used to detect the parameter criteria
used to determine the "accident roads". The concept of the third,
fourth and fifth are all words in the search database that contains
"spatial analysis", "mathematics modeling",
"classification”, and "MCDM methods" are synchronized with

the word

the synonyms of the word "accident roads". A complementary
manual search of the SLR is not done; this threat can be
overcome by entering the keyword search. This threat is to be
addressed byentering the keyword search commonly used in the
digital library database.

Internal Validity Threats. The primary purpose of conducting
SLR on the study was to reduce the internal validity threats [28].
Threats to the internal validity occur because the conclusions
are subjective on the activities of the SLR in the choice of
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articles of paper and extraction of data to the contents of the
paper. This can happen if the SLR on paper main does not
clearly describe the research topics taken [31]. To overcome
these threats because of lack of understanding in the knowledge
content of articles of paper, the writer who is currently pursuing
a Ph.D. is controlled by the promoter in determining papers
selected as a premier study.

External Validity Threats. External validity is the SLR result
determination overall, representing a review of the main
research topics were taken [31]. The SLR ability to identify valid
literature produced on an issue entire contents, research if
literature made invalid, then the idea is poured on a research
topic, not by the generated content [34].

Conclusion Validity Threats. To produce a valid conclusion
validity, all articles of the paper refer to research topics taken. In
certain making
conclusion validity did not include all reviews (excluded review
paper) should be included (Included review paper) in the review
to produce conclusion validity for certain conditions [31],
because it does not all the contents of articles of paper related to
the main study can be identified [27]. To overcome conclusion

circumstances, where some research in

validity threats, need to be designed study selection with the
inclusion and exclusion criteria.

3. RESULT AND DISCUSSION

In this mind map SLR in Figure 10, 189 major study papers
through SLR were used to analyze spatial datasets, spatial
analysis through mathematical modeling, and methods used for
the PRTA classification. SLR distribution is carried out from
January 2013 to September 2018. This topic shows the research
direction on the main research topics. The spatial analysis to
SLR studies found that Spatial data analysis using the MCDM
method approach from SLR primary studied only focuses on
road safety subject [35] [36] [37]. Figure 3 is the distribution of
the number of papers included in the PS category to be used as
reference research material (2018=43 papers; 2017=49 papers;
2016=30 papers; 2015=20 papers; 2014=24 papers; 2013=23
papers).

z
L]
£ 49
& 43
¢
]
gd 30
< 3 23 24
8
F-]
E
3
Z
2013 2014 2015 2016 2017 2018

Years

Figure 3: The Number of PS SLR
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The amount of paper distribution in each publisher in the
Scopus journal and proceeding was in Figure 4, 142 papers
(75%) published in journals, and 47 papers (25%) published in
the proceedings.

® Journals

B Proceeding
Conferences

Figure 4: The Number of Mapping PS

A brief overview of the primary studies is shown in Figure 5,
which shows that this study is still a trending topic in several
Scopus indexed journal publishers distributions. The highest
value is on the publisher Taylor & Francis. Publisher IEEE
Digital Explore contributes to the highest number of importance
on the conference results in Figure 6.
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Figure 5: The Distribution PS in Scopus Journal
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Figure 6: Distribution of Name of the Journal to PS
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3.1 Research Topics Field

Figure 7 is the distribution of research topic models in the PS of
spatial analysis for the most used type of classification with a
value of 29% papers, followed by the second order for the
classification method of 27% model clustering. Others use
predictive, statistical, regression, probability, distribution,
estimation, forecasting, dan optimization models. In this study,
researchers improve using classification categories.

% %
WClassification

B Clustering

= Predictive
Statistical

= REgression

=pobabikty

®WDistribution

WEstimation

WEorecasting

= Optimization

Figure 7: Dissemination of Research Model in PS

3.2 Methods Used
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The summary of the state-of-the-art methods obtained from SLR
of the PS, presented in Figure 8 and Appendix. The Artificial
Neural Network (ANN) method has the highest rating of
methods that are often used in SLR in primary studies. The
Empirical Bayes method and decision tree in data mining are
also widely used in the clustering category in spatial data
modeling of accident-prone areas. In this study, the authors
conducted a hybrid MCDM method with ANN, test the
consistency of the method from the model produced with the
Method Consistency Test (MCT), the value of Precision Recall

Accuracy (ARC) and Site Consistency Test (SCT).

3.3 Spatial Datasets

Based on the previous SLR, the authors present a list of spatial
datasets and methods used as targets in the development of this
study. Spatial datasets are used to describe the needs of spatial
data in the form of multi-criteria parameters. In the GIS field
research, the need for spatial data and data attributes is
essential, but it will be an obstacle if data acquisition is a private

agency.

The amount of use of data properties in GIS. Private data types
are most widely used in developing GIS applications for
modeling spatial data. The PS has obtained a value of 96% in
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previous studies that used private data types, while only 4% used
public data types, as shown in Figure 9.
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3.4 Proposed Method Improvements

This paper uses an Inductive Qualitative Approach in the
modeling of PRTA to identify the findings of science during the
research process. They propose a PRTA classification using
multiple criteria parameters (data series), make the modeling of
PRTA classification by calculating (1) the value of traffic
accident by type of events and the index of the accidents, (2) the
value of the density that of roads traffic accident happened to
each zone and the amount of data in each year, (3) the value of
risk factors based on the severity of the accidents, (4) the value
of severity of roads traffic accident events, (5) the value of crash
prediction models using data series, and (6) the value of the
societal cost of each type the accident, and (7)the test result is
using SCT, MCT, and APR.

The SLRs that have been carried out in this study, there is no
topic on the PRTA Classification proposed using two types of
classification methods on MCDM (AHP method, Fuzzy AHP
method, TOPSIS, WSM, and WPM) and Spatial Multi-level
Classification (Neural networks, Extreme learning machines,
k-nearest neighbours, Naive Bayes, Decision trees). The results
of the best methods through APR measurement will be a
reference in decision making in road management.

3.5 Implications for Research

The most crucial thing in developing spatial analysis modeling
for the PRTA classification is to have a significant analysis
between the data in the field and the resulting spatial analysis.
Testing to obtain substantial results needs to be done with MCT,
ARC, or SCT (depending on the dataset's behavior). Based on
the review through SLR, different evaluation results were
obtained between each paper discussion; this depends on the
multi-criteria datasets of the parameters and the type of model
used.

Many researchers have developed models through hybrid
methods with methods that have the same characteristics. The
results of this SLR review several models used for the PRTA
classification, where the models with classification types using
ANN are most widely used in the 2013-2018 study period.

3.6 Limitations of This Review

The study on SLR is carried out with several limitations relating
to the lack of validity of search terms, the publisher period, and
the publisher database's selection. This paper reviews the needs
of the multi-criteria parameter datasets, types of models, and
methods used for spatial analysis. Referring to the SLR results,
it will be used to find out how valid the results of the
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classification are given because this relates to the spatial
datasets, both private and public, and models and methods.

4, CONCLUSION AND FUTURE WORKS

The SLRs study that has been conducted on 189 papers as the
PS, there is no topic on the PRTA classification in the arterial
road, collector road, local road, road pavement, and road
geomeltry categories using two types of classification methods
on MCDM (AHP method, Fuzzy AHP method, TOPSIS, WSM,
and WPM) hybrid Multi-level Classification (Neural networks,
Extreme learning machines, K-nearest neighbors, Naive Bayes,
Decision trees). The best methods through APR measurement
will be a reference in decision making in road management.

Existing research is still limited to one type of road used as an
object (specific region), and 96 % is used Private Spatial
Datasets and in this study, using an Inductive Qualitative
Approach in the modeling of PRTA to identify the findings of

science that is done during the research process.

APPENDIX

Table 2. the Distribution of Method to Road Traffic Accident

Authors Methods Used
[38] [39] Agglomerative Hierarchical Clustering
Algorithm
[40] Density-Based Spatial Clustering
[41] [42] Expectation Maximization Clusterng
[43] Fuzzy C-Means Clustering
[44] Hierarchical Clustering
[40] [45] [46] [47] [48] [49] [50] K-means Cluster Analysis
[51][52]
[53] [54] K-Maodes Clustering Algorithm
[53] Latent Class Clustering

[18][55] [56]

Network kernel density estimation

[57][58] [59] [60]

Kernel Density Estimation

[61] Traffic Density Levels

[62] Fuzzy Analytic Hierarchy Process
[63] Fuzzy Comprehensive Evaluation
[64] Fuzzy Entropy Feature Selection
[40] [65] Neuro-Fuzzy Inference System
[66] Adaptable Neural Fuzzy

[49] [67] [08]

Fuzzy Logic

[691[70] [71] [67]1[72]

Fuzzy Rules

[73][74] [751[76]1 [77] (78] [79]
[RO][81] [R2] [83] [84] [85]

Artificial Neural Network

[86] Back-Propagation Neural Network

[61] Convolutional Neural Networks

[82] Fitting Neural Network

[&82] Generalized Regression Neural Network
[87] [88] [89] [85] Genetic Algorithm-Based Neural Network
[61][71] Genetic Programming

[90] [91] [92]

Long Short-Term Memory Neural
Network

[82] Multi-Layer Feedforward Artificial
Neural Network

[93] Multiobjective Particle Swarm
Optimization

[94] Particle Swarmm Optimization

[76] Particle Swarmm Optimization-Back
Propagation Neural Network

[74] Probabilistic Neural Network

[86] [74] Radial Basis Function Neural Network

[61] Recurrent Neural Networks
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Authors Methods Used Authors Methods Used

[37] Simultaneous Multi-Objective [139][161][153]
Optimization [167][134] Poisson Lognormal Regression

[94] [95] [96] [87] [97] Support Vector Machine [146] Poisson Mixture Model
[98] [99] Hierarchical Ordered Logit Model [163][14][166] [168] Poisson Regression Model
[100] Sequential Binary Logit Models [169] Poisson Tweedie distribution
[101] [61] Mixed Logit [111][137] Poisson-Gamma
[102] [103] Nested Logit [137] Poisson-Inverse Gaussian
[104] [95] [100] [105] [103) Multinomial Logit [170][138][72] Quantile Regression
[106] [115] Random-Effect Negative Binomial
[1O7] [103][108] Binary Logit [97] Random-parameters Negative Binomial
[100] [109] Ordered Logit Model [97] Random-parameters Poisson
[110] Akaike information criterion Statistic [140][171] Regression Equation Method
[LI1) [112) [113)[114])[115] Bayesian Hierarchical Spatial [118] Regression Hazard Model
[116] [99][117] Bayesian Inference [731[107][14] [118] Regression Model
[118] [110] Bayesian Information Criteria Statistic [38] [87] Regression Trees
[101] [4] Bayesian Logistic Regression [172] Simple Linear Regression
[119] Bayesian Multiple Testing [173][138] Spatial Poisson-Lognormal
[113] Bayesian Multivariate Modelling [174)[175][176] [177][12] Statistical Analysis

[120] [76] [121] [122] [123] [88]

Bayesian Networks

[178]

[114] [117] [108][97] Tobit Regression
[124] [125] Bayesian Probabilistic Networks (2] Spatial Autocorrelation (Moran's [
[32][126] [52] [126] Bayesian Random Parameters Logistic method)

Regression [3] Zero-Inflated Negative Binomial
[127]) [128][129] Bayesian Spatial models [98] Zero-Inflated Ordered Probit Model
[130] Binomial Regression 3] Zero-1nflated Poisson
[128] Bivariate Regression Model [179] Ontology-based Classification and
[131] Boosted Trees Regression Regression Tree
[83] Dynamic Regression [180] [1B1][76] [46] [48] [87] K-Nearest Neighbour
[132] Empirical Bayesian Count Without [45] Standard Empirical Bayes'

Volume and With Volume

[112] [133]

Full Bayes Hierarchical Statistic

[17)[45] [169] [182] [163] [183]
[130] [184] [138] [72] [125]

Empirical Bayes’

[134] Full Bayesian [171][185] [43]

[135] Gaussian Mixture Model [186] [187] [66] [188][127] [47] | Naive Bayes Classifier

[136] [137] Generalized Linear Model [189] [190]

[3] Heterogeneous Negative Binomial [124] [138] Hierarchical Bayes

[124] [138] Hierarchical Bayes [190] Adaboost and bagging Mining

[98] Hierarchical Ordered Probit Model [37][191] Analytic Hierarchy Process

[3] [139] Hurdle Negative Binomial [192] [190] [193][9] C4.5 Algorithm Decision Tree

[3][139] Hurdle Poisson [188] [193] [194] CART Decision Tree

[87] Linear Discriminant Analysis [RT][195] CN2-8D Mining Algorithm

[140] [141][142] Linear Regression [I8T7)[189] [81][192] [88][196] | Decision Tree

[143] Local Regression [197] [193] [194] [198] [110]

[140] Loganthmic Linear Regression [198]

[144] [145][146] [147] [148] Logistic Regression [1991 Degree of Attribute Importance

[149] [200] [201] Electre-Multicriteria Analysis

[150] [110] Log-Likelihood Statistic (191 Fault Tree Analysis

[133]) [108][110] Log-Nomal Distribution Model [186] Gradient Boosting Trees

[151] Matrix Factorization-Based Framework., [202] GUHA Data Mining Method
Feature-Based Matrix Factorization, [188] [194] 1D3 Algorithm Decision Tree
Non-Ne gative Matrix Factorization, [188] J48 Algorth Decision Tree
Feature-Based Non-Negative Matrix [195] MIDOS Mining Algorithm
Factorization [203] Multi Attribute Decision Analysis

[12] Multinomial Logistic Regression [24][25] Multiple-Attribute Utility Theory

[152] [153] Multiple Linear Regression [204] Outliner Mining

[79] Multivanate Analysis [35] [36] Promethee-MCDM

[154] Multivariate Linear Regression [95] [4] [190] Random Forest Mining

[155] Multivarate Poisson Lognormal [94] [189] Rule Extraction
Regression [201] [50] [15] [130] [54] [205] Rule Mining

[124] [156] Multivanate Regression Analysis [206]

[155] [133] Multivanate Spatial Correlation [185] Simple Ranking method

[157][92] Multivanate Statistical Analysis [35] TOPIS-MCDM

[41][158] Multivanate-Poisson-lognormal-spatial

[136] [159] [80] [3] [86] [160] Negative Binomial ACKNOWLEDGEMENT

[65] [139] [138] [161] [153]

[115] [162]

Negative Binomial Multilevel Model

[75] [163] [164] [115] [162]
[165] [72] [166] [138]

Negative Binomial Regression

[95][126] Nonlinear Canonical Correlation Analysis
[65] Non-Linear Exponential Regression
[78] [103][75] Ordered Probit Regression

[150] [136] [75] [3] [133] [65]

Poisson
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