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Abstract 

Digraph        is a graph which each of edge has orientation called arc. Notice that a 

set of vertices and a set of arcs on D respectively is denoted by V(D) and A(D), with 

  |    | and   |    |. A one-to-one map                        is a 

vertex magic total labeling if there is a constant k such that at any vertex y require to: 

∑     ⃗⃗⃗⃗  

       

      ∑     ⃗⃗⃗⃗  

       

   

where       is a set of arcs that entering vertex y and       is a set of arcs that 

leaving vertex y. In this paper, we describe how to construct vertex magic total labeling 

on suns digraph. Sun digraph,   
⃗⃗⃗⃗ ,    , is defined as cycle digraph by adding an 

orientation pendant at each vertex of the cycle. The orientation of arcs in the sun 

digraph follow clockwise direction. 

 

Keywords: Digraph Labeling, Sun Digraph,Vertex Magic Total Labeling 

 

 

INTRODUCTION 

Let         be a graph with      

is a nonempty set of vertices and      is a 

set of edges (in short   and  ), with | |    

and | |   . A labeling of a graph is any 

mapping that sends some set of graph 

elements to a set of numbers (usually to the 

positive integers). If the domain is the 

vertex-set or the edge-set, the labelings are 

called respectively vertex-labelings or edge-

labelings. In this paper we deal with the case 

where the domain is    , and these are 

called total-labelings. There are many types 

of graph labelings, for example harmonious, 

cordial, graceful and antimagic. In this 

paper, we focus on one type of labeling 

called vertex-magic total labeling. Gallian 

(2013) outlined many more of graph 

labeling in a general survey of graph. 

The concept of vertex magic total 

labeling were first introduce by MacDougall 

et al. (2002), this is an assignment of the 

integers from 1 to     to the vertices and 

edges of   so that at each vertex the vertex 

label and the labels on the edges incident at 

that vertex add to a fixed constant. More 

formally, a one-to-one map   from     

onto the integer               is a vertex-

magic total labeling if there is a constant   

so that for every vertex  : 

              

where the sum is over all vertices   adjacent 

to  . Let us call the sum of labels at vertex   

as the weight of the vertex; so we require 

        for all    . The constant k is 

called the magic constant for  . M.T.Rahim 

and Slamin (2012) was proved that disjoint 

union of sun graphs               , 

     for every           and    , 

has a vertex magic total labeling. In this 

paper, we deal to construct a vertex magic 

total labeling on digraph, specially is sun 

digraphs. Let         is a digraph with 

vertex set V and arc set A with | |    and 

| |   . Then, a vertex magic total labeling 

of digraph D is a one-to-one map that carries 

a set of     into a set of number 

             , so that the weight of the 

vertex require to         for all    . 

 

LITERATURE REVIEW 
 

Digraph 

A digraph D consist of a non-empty 

finite set      of elements called vertices 

and a set      of ordered pair of vertices 

called arcs. We call      as the vertex set 
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and       as the arc set of D. We will often 

write        which means that V and A are 

the vertex set and arc set of D, respectively. 

The order (size) of D is the number of 

vertices (arcs) in D (Slamin, 2009). Let the 

order n size of D respectively are denoted as 

s and t. For an arc        , the first vertex 

x is its initial end vertex and the second 

vertex y is its terminal end vertex, and arc e 

is said to be incident out of vertex x and e is 

said to be incident into y. An in-neighbour 

(respectively, out-neighbour) of a vertex y in 

D is a vertex x (respectively, z) such that 

        (respectively,        ). The set 

of all in-neighbours (respectively, out-

neighbours) of a vertex y is called the in-

neighbourhood (rspectively, the out-

neighbourhood) of y and denoted by       
(respectively,      ) (Dafik, 2008). In this 

paper, the orientation of arcs follow 

clockwise direction.  

 

Vertex Magic Total Labeling 

MacDougall et al. was introduce the 

concept of vertex magic total labeling (in 

short VMTL) on graph for first time in 2002. 

Hefetz et al. (2010) shown that an antimagic 

labeling of a directed graph D with s vertices 

and t arcs is a bijection from the set of arcs 

of D to the integers           such that all s 

oriented vertex sums are pairwise distinct, 

where an oriented vertex sum is the sum of 

labels of all arcs entering that vertex minus 

the sum of labels of all arcs leaving it. 

Similarly, we can call that a magic labeling 

on digraph D is a one-to-one maping from 

the set of arcs on D to the integers           
such that all s oriented vertex sums are 

equal. 

Vertex magic total labeling on 

digraph D is a one-to-one map   from     

onto the integers               if there is a 

constant k so that for every vertex     

require to: 

∑     ⃗⃗⃗⃗  

       

      ∑     ⃗⃗⃗⃗  

       

   

where       is an set of arcs that 

entering vertex y or in-neighbourhood of y 

and       is a set of arcs that leaving vertex 

y or out-neighbourhood of y. Let us call the 

sum of labels at vertex y as the weight of the 

vertex, so that we require         for all 

    and the constant k is called the magic 

constant for  . 

 

METHOD 

In this paper we use several method 

for construct a vertex magic total labeling on 

sun digraphs, such as study literature for get 

insight of concept of vertex magic total 

labeling, observation for sun digraph to get 

the characteristic of it, construct a vertex 

magic labeling on sun digraph so that we get 

a labeling that expandable for all sun 

digraph with different n and find a bijective 

fungtion of vertex magic total labeling on 

sun digraphs using pattern recognition 

method. 

 
RESULT 

Vertex Magic Total Labeling on Sun 

Digraph 

Sun Digraph, denoted by   
⃗⃗⃗⃗  is a cycle 

digraph,   
⃗⃗ ⃗⃗ , with adding an orientation 

pendant to each vertex of the cycle digraph. 

The sun digraph   
⃗⃗⃗⃗  consist of the vertex set 

     |          |       and 

arc set          ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |            ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  
    , with     and     is taken 

modulo n. Notice that    are inner vertices 

and    are outer vertices of   
⃗⃗⃗⃗ . Thus,   

⃗⃗⃗⃗ has 

   vertices and    arcs. The following 

theorem describes a vertex magic total 

labeling on sun digraph   
⃗⃗⃗⃗ , for    . 

 

Theorem 1. For    , sun digraph   
⃗⃗⃗⃗  has 

a vertex magic total labeling with magic 

constant     . 

 

Proof. Let s and t are order and size of   
⃗⃗⃗⃗ , 

thus      and     . Define total 

labeling                         in 

the following way: 

       {
               

                   
 

 

                       
 

         ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 {
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       ⃗⃗ ⃗⃗ ⃗⃗  ⃗             
 

Then we get the label vertices and arcs of 

sun digraph   
⃗⃗⃗⃗ , that is both of       

                             and 

                            
was a set which complementary. So it is 

easy to verify that the labeling    is a 

bijection form the set     onto the set 

              . 
Let us denote the weight of the 

vertices    and    of   
⃗⃗⃗⃗  under the labeling    

by: 

    
              ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

        ⃗⃗ ⃗⃗ ⃗⃗  ⃗  
And 

    
            ⃗⃗ ⃗⃗ ⃗⃗  ⃗         

Then for all             and     is taken 

modulo n, the weight of the vertices    can 

be determined as following way: 

 for        , we have 

    
              ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗         

          ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
        ⃗⃗ ⃗⃗ ⃗⃗  ⃗  

             
        

              

      

 for    , we have 

    
              ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          

        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  
        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  

                 

            

      
 

By the similar way, for all             and 

    is taken modulo n, the weight of the 

vertices    can be determined as following 

way: 

    
            ⃗⃗ ⃗⃗ ⃗⃗  ⃗         

            

      
 

Since the weight of vertices    and    is 

    
         

         , for all 

     , then    is a vertex magic total 

labeling with magic constant     . Thus, 

sun digraph   
⃗⃗⃗⃗ ,    , has a vertex magic 

total labeling with magic constant      is 

proved. □ 

 

The example of vertex magic total labeling 

on sun digraph   
⃗⃗⃗⃗  is given by Figure 1. 

 

 

 
 

Figure 1. Vertex Magic Total Labeling on (a)   
⃗⃗  ⃗, (b)   

⃗⃗  ⃗, (c)   
⃗⃗  ⃗, and (d)   

⃗⃗  ⃗ 
 

Vertex Magic Total Labeling on Disjoint 

union of Sun Digraphs 

The disjoint union of m copies sun 

digraphs   
⃗⃗⃗⃗ , denoted by    

⃗⃗⃗⃗ , is defined as 

digraph with vertex set      
 |    

             
 
|          

    and arc set      
 
    

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|        
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 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|            , 
with     and     is taken modulo n. 

The order and size of    
⃗⃗⃗⃗  respectively are 

    vertices and     arcs. The following 

theorem describes a vertex magic total 

labeling on digraph    
⃗⃗⃗⃗ , for     and 

   . 

 

Theorem 2. For     and    , the m-

copies of sun digraphs    
⃗⃗⃗⃗  has a vertex 

magic total labeling with magic constant 

     . 

 

Proof. Let s and t are order and size of 

   
⃗⃗⃗⃗ , thus       and      . Define 

total labeling                      
   in the following way: 

 for        , we have 

  (  
 
)

                   
 

  (  
 
    

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

 {
                     

               
 

 

 for    , we have 

  (  
 
)                

 

  (  
 
    

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

 {
              
             

 

 

 

 for       and        , we 

have 

  (  
 
)                 

 

  (  
 
  

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)           

Then we get the label vertices and arcs of 

   
⃗⃗⃗⃗ , that is: 

                        
           

                     
     

                 
and 

                      
         

                  
    

             
where       and       were a set which 

complementary. So it is easy to verify that 

the labeling    is a bijection form the set 

    onto the set              . 
Let us denote the weight of the 

vertices   
 
 and   

 
of    

⃗⃗⃗   under the labeling 

   by: 

 

    
(  

 
)   

  (    
 

  
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)    (  

 
)    (  

 
    

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

   (  
 
  

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) and  

    
(  

 
)    (  

 
  

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)    (  
 
) 

 

Then, for all            ,             

and     is taken modulo n, the weight of 

the vertices   
 
 can be determined as 

following way: 

 for     and        , we have 

    
(  

 )    (    
   

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)    (  
 ) 

   (  
     

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)    (  
   

 ) 

             
        

    

 (     

    
  ) 

             
    

                

       
 

 for     and    , we have 

    
   

     (    
   

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )       
   

   (  
   

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)       
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 for       and        , we 

have 

    
(  

 
)    (    

 
  

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)    (  
 
) 

   (  
 
    

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)    (  
 
  

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

 (             )
      

        

 (   

      ) 

            

       
 

 for       and    , we have 

    
(  

 
)    (    

 
  

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )    (  
 
) 

   (  
 
  

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)    (  
 
  

 
) 

 (             )
      

            
     

 (        ) 

       
 

By the similar way, for all            , 

            and     is taken modulo n, 

the weight of the vertices   
 
 can be 

determined as following way: 

    
(  

 
)    (  

 
  

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)    (  
 
) 

 (        )      

   
            

       

 
 

Figure 2. Vertex Magic Total Labeling on    
⃗⃗  ⃗ with      

 

Since the weight of vertices   
 
 and   

 
 is 

    
(  

 
)      

(  
 
)        for all 

      and       , then    is a 

vertex magic total labeling with magic 

constant      . Thus, digraph    
⃗⃗⃗⃗ , 

    and    , has a vertex magic total 

labeling with magic constant       is 

proved. □ 

The example of vertex magic total 

labeling on disjoint union of 3 copies of   
⃗⃗  ⃗ 

is given in Figure 2. We note that if    , 

then    
⃗⃗⃗⃗  is isomorphic to   

⃗⃗⃗⃗ . In this case 

Theorem 2 shows the vertex magic total 

labeling on   
⃗⃗⃗⃗  with magic constant 

                  . In 

general we can combine Theorem 1 and 

Theorem 2 as follow: 

 

Theorem 2’. For     and    , the m-

copies of sun digraphs    
⃗⃗⃗⃗  has a vertex 

magic total labeling with magic constant 

     . 

 

Super Vertex Magic Total Labeling on 

Sun Digraphs 

In this section we consider a super 

vertex magic total labeling on sun digraph. 

Vertex magic total labeling on G is called 

super if                (MacDougall et 

al., 2004). Thus, vertex magic total labeling 

on digraph D is called super if     
          and                , 
for   | | and   | |. The following 

theorem present super vertex magic total 

labeling of m-copies of sun digraph. 

 

Theorem 3. The m-copies of sun digraphs 

   
⃗⃗⃗⃗  is not super vertex magic total 

labeling for all     and    .  

 

Proof. Let s and t are order and size of    
⃗⃗⃗⃗  

respectively, thus       and      . 
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Define    is one-to-one map      
            and             
          . If     

  is sum of the weight 

of vertices,     
, from all vertices   

 
 and 

  
 
 in    

⃗⃗⃗⃗ , then     
 is given by following 

way: 

    
 ∑  

   

     

 ∑  

 

   

 ∑  

   

     

 

 ∑  

   

   

 

 
          

 
 

 

If k is magic constant for super vertex 

magic total labeling on    
⃗⃗⃗⃗ , then we get: 

      
̅̅ ̅̅ ̅̅ ̅ 

 

          
 

   
 

 
     

 
 

 

for all     and    , we get magic 

constant k is not integer. This condition is 

contradiction that k is require equal to the 

weight of vertices, so that magic constant k 

must be integer. Thus, there is no super 

vertex magic total labeling on digraphs 

   
⃗⃗⃗⃗  for all     and    . □ 

Since the order and size of    
⃗⃗⃗⃗  is 

       , then we called vertex magic 

total labeling is anti-super if        
              . 
 

Theorem 3’. There is no anti-super vertex 

magic total labeling on  the m-copies of sun 

digraphs    
⃗⃗⃗⃗  for all     and    .  

 

Proof. Define    is anti-super vertex magic 

total labeling on sun digraphs    
⃗⃗⃗⃗ , then 

                       and 

                . Let     
  is sum of 

the vertices weight,     
, from all vertices 

  
 
 and   

 
 in    

⃗⃗⃗⃗ , then     
 is given by 

following way: 

    
 ∑  

 

   

 ∑  

   

     

 ∑  

 

   

 

 ∑  

   

       

 

 
              

 
 

 
          

 
 

 

If k is magic constant for anti-super vertex 

magic total labeling on    
⃗⃗⃗⃗ , then we get: 

      
̅̅ ̅̅ ̅̅ ̅ 

 

          
 

   
 

 
     

 
 

 

for all     and    , we get k is not 

integer. This condition is contradiction that 

k is require equal to the weight of vertices, 

so magic constan k must be integer. 

Therefore, there is no anti-super vertex 

magic total labeling on digraphs    
⃗⃗⃗⃗  for all 

    and    . □ 

 

CONCLUSION 

We conclude this paper with the 

following open problem related to vertex 

magic total labeling on sun digraph. 

Open problem 1. Find vertex magic total 

labeling on disjoint union of non-

isomorphic sun digraph. 
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